Pb₅Al₃F₁₉

$V = 1475(3) \text{ Å}^3$	T = 370 K
Z = 4	Sphere
$D_{r} = 6.66 \text{ Mg m}^{-3}$	0.3 mm (radius)
$D_m = 6.66 \text{ Mg m}^{-3}$	Colourless

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.065$
diffractometer	$\theta_{\rm max} = 30^{\circ}$
ω/θ scans	$h = -20 \rightarrow 20$
Absorption correction:	$k = -20 \rightarrow 20$
by spherical model	$l=0 \rightarrow 10$
$T_{\rm min} = 0.0009, T_{\rm max} =$	3 standard reflections
0.0185	monitored every 200
5787 measured reflections	reflections
1715 independent reflections	intensity decay: <4%
1314 observed reflections	
$[I > 3\sigma(I)]$	

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.01$
R = 0.053	$\Delta \rho_{\rm max} = 5 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.058	$\Delta \rho_{\rm min} = -6 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.12	Extinction correction: none
1115 reflections	Atomic scattering factors
52 parameters	from Cromer & Waber
$w = (weight)[1 - (\Delta F/6\sigma^2(F))]^2$	(1974)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	y	z	U_{eq}
Pb1	0.08474 (7)	-0.23970 (6)	0	0.018 (1)
Pb2	-0.06116 (6)	-0.21768 (5)	1/2	0.013 (2)
Pb3	0	1/2	1/4	0.072 (2)
A11	0.1581 (4)	0.3255 (4)	0	0.012 (4)
Al2	0	0	0.2460(1)	0.012 (4)
F1	0	0	0	0.038 (5)
F2	0	0	1/2	0.038 (5)
F3	0.3854 (9)	0.4500 (8)	0.2460 (2)	0.038 (5)
F4	0.2001 (9)	0.4076 (9)	0.1730 (2)	0.038 (5)
F5	0.3921 (9)	0.2494 (9)	0.6700 (2)	0.038 (5)
F6	0.2630 (10)	0.2610 (10)	0	0.038 (5)
F7	0.4530 (10)	0.1120 (10)	1/2	0.038 (5)
F8	0.4170 (10)	0.1250 (10)	0	0.038 (5)

Table 2. Selected geometric parameters (Å, °)

Pb1···F4 ⁱ	2.52(1)	Al1F4 ^{xi}	1.82(1)
Pb1···F4 ⁱⁱ	2.52(1)	Al1—F5 ^{vii}	1.78 (1)
Pb1···F6 ⁱⁱⁱ	2.54 (2)	Al1—F5 ^{xii}	1.78 (1)
Pb2···F5 ^{iv}	2.52 (1)	Al1F6	1.75 (2)
$Pb2 \cdot \cdot \cdot F5^{v}$	2.52 (1)	All—F7 ^{vii}	1.81 (2)
Pb2···F6 ^{vi}	2.54 (2)	A12-F1	1.777 (8)
Pb2···F8 ^{vi}	2.27 (2)	Al2—F2	1.836 (8)
Ph3···F7 ^{vii}	2.51 (1)	Al2—F3 ^{vii}	1.79(1)
Pb3···F7 ^{viii}	2.51 (1)	Al2—F3 ^{xiii}	1.79(1)
Ph3···F7 ^{ix}	2.51 (1)	Al2-F3 ^{xiv}	1.79(1)
Pb3···F7 ^x	2.51 (1)	A12—F3 ⁱ	1.79(1)
All—F4	1.82(1)		
F4 ⁱ ···Pb1···F4 ⁱⁱ	139.7 (6)	F4—Al1—F5 ^{xii}	92.7 (6)
F4 ⁱⁱ ···Pb1···F6 ⁱⁱⁱ	85.0 (3)	F5 ^{xü} —A11—F5 ^{vü}	87.2 (9)
$F5^{v} \cdot \cdot \cdot Pb2 \cdot \cdot \cdot F5^{iv}$	142.2 (6)	F4-A11-F6	93.3 (6)
$F5^{v} \cdot \cdot \cdot Pb2 \cdot \cdot \cdot F6^{vi}$	73.4 (3)	F4—A11—F7 ^{vii}	88.4 (6)
F5 ^v ···Pb2···F8 ^{vi}	77.2 (6)	F5 ^{vii} —Al1—F7 ^{vii}	86.8 (6)
F6 ^{vi} ···Pb2···F8 ^{vi}	75.2 (6)	F6—Al1—F7 ^{xii}	177.7 (9)
F7 ^{vii} ···Pb3···F7 ^{viii}	87.9 (6)	F1Al2F2	179.99
F7 ^{ix} ···Pb3···F7 ^{viii}	121.2 (3)	F1-Al2-F3 ^{vii}	92.0 (5)
F4-A11 ^{xi} -F4 ^{xi}	87.0 (8)	F3 ⁱ —Al2—F3 ^{vii}	89.93 (3)
F4-All-F5 ^{vii}	175.1 (7)	F3xiii-Al2-F3vii	176.1 (10)

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Symmetry codes: (i) $\frac{1}{2} - y, x - \frac{1}{2}, \frac{1}{2} - z$; (ii) $\frac{1}{2} - y, x - \frac{1}{2}, z - \frac{1}{2}$; (iii) y, -x, -z; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{3}{2} - z$; (v) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (vi) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{1}{2} + z$; (vii) $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} - z$; (viii) $x - \frac{1}{2}, \frac{1}{2} + y, \frac{1}{2} - z$; (ix) -y, x, z; (x) y, 1 - x, 1 - z; (xi) x, y, -z; (xii) $\frac{1}{2} - x, \frac{1}{2} - y, z - \frac{1}{2}$; (xiii) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{1}{2} - z$; (xiv) $y - \frac{1}{2}, \frac{1}{2} - z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: local program (unpublished). Program(s) used to refine structure: CRYSTALS (Watkin, Carruthers & Betteridge, 1985).

The authors wish to thank R. Von der Mühll for piezoelectric and pyroelectric tests and D. J. Watkin for providing the refinement program.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1109). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Andriamampianina, V., Gravereau, P., Ravez, J. & Abrahams, S. C. (1994). Acta Cryst. B50, 135-141.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Ravez, J., Andriamampianina, V. & Abrahams, S. C. (1994). Ferroelectrics, 158, 133-137.
- Ravez, J., Andriamampianina, V., Simon, A., Rabardel, L., Ihringer, J. & Abrahams, S. C. (1994). J. Appl. Cryst. 27, 362–368.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1995). C51, 1732-1735

Octachlorosilasesquioxane, Cl₈Si₈O₁₂

KARL WILHELM TÖRNROOS

Structural Chemistry, Stockholm University, 106 91 Stockholm, Sweden

GION CALZAFERRI AND ROMAN IMHOF

Institute for Inorganic and Physical Chemistry, University of Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland

(Received 18 December 1994; accepted 27 March 1995)

Abstract

The structure of $Cl_8Si_8O_{12}$ is compared with those of the isostructural compounds $H_8Si_8O_{12}$ and $(CH_3)_8Si_8O_{12}$. The geometric deformations in $Cl_8Si_8O_{12}$ seem to originate from the joint effect of intermolecular packing interactions (interelectronic repulsion) and electronic factors (electronegativity of the chlorine substituent).

Comment

Octachlorosilasesquioxane, $Cl_8Si_8O_{12}$ (Cl_8T_8), shown in Fig. 1, is essentially isostructural with the previously determined structures of $H_8Si_8O_{12}$ (H_8T_8) at 100 K (Auf der Heyde, Bürgi, Bürgy & Törnroos, 1991) and (CH_3)₈Si_8O_{12} [(CH_3)₈ T_8] (Koellner & Müller, 1989), but does not retain the non-crystallographic molecular symmetry, T_h ($m\bar{3}$), characteristic of the latter two. The highest attainable molecular symmetry common to the three compounds is O_h ($m\bar{3}m$). As can be seen in Table 2, some of the chemically equivalent, but crystallographically inequivalent structural parameters, notably the tetrahedral angles, differ significantly. Hence, the molecular symmetry is the same as the crystallographic, $S_6(\bar{3})$.

Fig. 1. Structure of the title compound displaying 50% probability anisotropic harmonic displacement ellipsoids and atomic labelling.

The geometric differences between Cl_8T_8 , H_8T_8 and $(CH_3)_8T_8$ are as follows (numbers in parentheses represent standard deviation of population, s^*). The average Si-O bond distance is shorter, 1.601 (7) Å, compared with 1.618 (1) Å in H_8T_8 and 1.614 (3) Å in $(CH_3)_8T_8$. The angles around the Si atoms in H_8T_8 correspond to those of a regular tetrahedron, which is also true for Cl_8T_8 [109.5 (4)°] when averaging the Si1 and Si2 geometries. However, in contrast to H_8T_8 , the individual Si1 and Si2 tetrahedral geometries in Cl_8T_8 are inconsistent, exhibiting a mean exocyclic O-Si1-Cl angle of 109.8 (2)° and a mean endocyclic O-Si1-O angle of 109.1 (2)°, with a mean exocyclic O-Si2-Cl angle of 109.4 (6)° and a mean endocyclic O-Si2-O angle of 109.6 (4)°. The structure of $(CH_3)_8T_8$ has a consistent overall mean exocyclic O-Si-C angle of

*
$$s = [1/(n-1)][\sum_{i=1}^{n} (x_i - \bar{x})^2]^{1/2}$$
.

 $109.9 (4)^{\circ}$ and a mean endocyclic angle of $109.0 (1)^{\circ}$. The increase in the exocyclic angles is in accord with an interelectronic repulsion scenario, involving orbitals on Cl, CH₃ and the O atoms.

The values given in Table 3 make some further comparisons of the three structures possible. Apart from being, on average, the smallest of the three structures, the non-bonding Si1...Si1ⁱⁱⁱ body diagonal distance along the threefold axis in Cl₈T₈ is elongated in relation to the opposite body diagonal distance Si2...Si2ⁱⁱⁱ, compared to H₈T₈ and in particular to $(CH_3)_8T_8$. This reveals a deformation of the Si cube towards a more rhombic cage, with a stretching along the threefold axis and a compression perpendicular to it. The deformation is also reflected by the deviating non-bonding Si...Si cube-edge distances in Cl₈T₈. The inconsistency between the tetrahedral environment of the two unique Si atoms agrees with this cage deformation.

Apart from the body diagonal distances, the two distances between opposite O atoms across the faces of the cube, $O1 \cdots O5$ distances, serve as a sensitive measure of the deviation from O_h symmetry. These differ by as much as 0.308 (1) Å in H₈T₈, while the difference is smaller and essentially identical in Cl₈T₈ [0.078 (7) Å] and (CH₃)₈T₈ [0.075 (2) Å].

The deformation of H_8T_8 is attributed to effects of intermolecular Si \cdots O interactions, indicative of an incipient nucleophilic attack of O on Si, or of incipient five-coordination of the Si atoms, which have been concluded previously to be largely responsible for deformation effects on silasesquioxane cages (Auf der Heyde, Bürgi, Bürgy & Törnroos, 1991; Bürgi, Törnroos, Calzaferri & Bürgy, 1993; Calzaferri, Imhof & Törnroos, Calzaferri & Bürgy, 1993; Calzaferri & Bürgy, 1995). For obvious reasons, such interactions are impossible in the structures of Cl_8T_8 and $(CH_3)_8T_8$, although short intermolecular interactions (less than the sum of the van der Waals radii) are detected in Cl_8T_8 [Cl2 \cdots Si2($y - \frac{1}{3}, -x + y + \frac{1}{3}, -z + \frac{1}{3}$) and Si2 \cdots Cl2($x - y + \frac{2}{3}, x + \frac{1}{3}, -z + \frac{1}{3}$) 3.823 (3) Å] and may be the cause of the observed stretching/compression deformation.

Regarding the observed Si—O bond shortening in Cl_8T_8 , it seems reasonable to argue that the formal charge of Si must be closer to +4 than in H_8T_8 and $(CH_3)_8T_8$, due to the significant electronegativity of the Cl substituent. The consequently contracted electronic shell of Si results in a shorter Si—O distance, assuming a constant radius of the O atom. This conclusion is indeed qualitatively supported by calculations of the partial charge on Si, using the *Principle of Electronegativity Equalization* by Sanderson (1971), as the partial positive charge on Si increases when going from Si—H via Si—CH₃ to Si—Cl.

To circumvent the experimental difficulties resulting from the moisture and X-ray sensitivity of these compounds (Cl_8T_8 in particular), experiments aimed at achieving higher accuracy have to be made at a very CII

Cl2

01

02

low temperature. Such a low-temperature study of this compound is under preparation, aiming to determine the charge-density distribution, as has been achieved for H₈T₈ at 9.2 K (Törnroos, Schwarzenbach, Larsen & Delley, 1995). Furthermore, additional structure determinations, in particular of F₈Si₈O₁₂ and (OH)₈Si₈O₁₂, are essential in order to enable a deeper systematic investigation and characterization of the electronic effects on the molecular geometry, in combination with computational methods.

Experimental

The compound was synthesized according to Day, Klemperer, Mainz & Millar (1985) by photochemical chlorination of H₈Si₈O₁₂. Small colourless air-sensitive rhombic crystals were grown by slow evaporation from n-hexane under an inert atmosphere.

Crystal data

Cl ₈ Si ₈ O ₁₂	Mo $K\alpha$ radiation
$M_r = 700.32$	$\lambda = 0.71073 \text{ Å}$
Trigonal	Cell parameters from 36
$R\overline{3}$	reflections
a = 12.353 (2) Å	$\theta = 4.95 - 11.60^{\circ}$
c = 12.931 (2) Å	$\mu = 1.456 \text{ mm}^{-1}$
$V = 1708.9 (4) \text{ Å}^3$	T = 291 (2) K
Z = 3	Rhombic
$D_x = 2.041 \text{ Mg m}^{-3}$	$0.125 \times 0.075 \times 0.075$ mm
-	Colourless

Data collection

Stoe AED-2 diffractometer	$\theta_{\rm max} = 30.00^{\circ}$
$\omega/2\theta$ scans	$h = -8 \rightarrow 17$
Absorption correction:	$k = -9 \rightarrow 17$
analytical	$l = 0 \rightarrow 18$
$T_{\min} = 0.852, T_{\max} =$	3 standard reflections
0.901	frequency: 180 min
1117 measured reflections	intensity decay: <2.9%
1117 independent reflections	(corrected by linear
301 observed reflections	interpolation)
$[I > 3\sigma(I)]$	-

Refinement

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0459$ wR(F²) = 0.0700 Extinction correction: none S = 1.184Atomic scattering factors 301 reflections from International Tables 43 parameters for Crystallography (1992, $w = 1/[\sigma^2(F_o^2) + (0.0261P)^2]$ Vol. C, Tables 4.2.6.8 and where $P = (F_o^2 + 2F_c^2)/3$ 6.1.1.4) $(\Delta/\sigma)_{\rm max} < 0.001$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
Si1	0	0	0.2072 (3)	0.042(1)
Si2	0.0129 (2)	0.2096 (2)	0.0686 (2)	0.0396 (6)

0	0	0.3611 (3)	0.0742 (15)
0.0249 (2)	0.3674 (2)	0.1195 (2)	0.067 (1)
0.0096 (5)	0.1260 (5)	0.1654 (4)	0.049 (2)
0.1317 (5)	0.2441 (5)	-0.0020(4)	0.0453 (15)

Table 2. Bond lengths (Å) and angles (°)

Si1—O1' Si1—O1 Si1—O1" Si1—C11 Si2—O2	1.595 (4) 1.595 (4) 1.595 (4) 1.989 (4) 1.595 (4)	Si2—O2 ⁱⁱⁱ Si2—O1 Si2—Cl2 O2—Si2 ^{iv}	1.605 (4) 1.610 (4) 1.992 (2) 1.605 (4)
$\begin{array}{c} 01^{i} - Si1 - 01 \\ 01^{i} - Si1 - 01^{ii} \\ 01 - Si1 - 01^{ii} \\ 01^{i} - Si1 - C11 \\ 01 - Si1 - C11 \\ 01^{ii} - Si1 - C11 \\ 01^{ii} - Si1 - C11 \\ 02 - Si2 - 02^{iii} \end{array}$	109.1 (2) 109.1 (2) 109.1 (2) 109.9 (2) 109.9 (2) 109.9 (2) 109.7 (2)	$\begin{array}{c} 02 \\ -Si2 \\ -O1 \\ 02^{iii} \\ -Si2 \\ -O1 \\ 02^{iii} \\ -Si2 \\ -C12 \\ 01^{iii} \\ -Si2 \\ -C12 \\ Si1 \\ -O1 \\ -Si2 \\ Si2 \\ -O2 \\ -Si2^{iv} \end{array}$	110.0 (2) 109.0 (2) 108.6 (2) 109.9 (2) 109.7 (2) 148.8 (3) 148.0 (3)

Symmetry codes: (i) -y, x - y, z; (ii) -x + y, -x, z; (iii) x - y, x, -z; (iv) $y_{1} - x + y_{2} - z_{2}$.

Table 3. Non-bonding distances (Å) in some octanuclear silasesquioxanes

	Cl ₈ Si ₈ O ₁₂	H ₈ Si ₈ O ₁₂	(CH ₃) ₈ Si ₈ O ₁₂
Sil···Sil ⁱⁱⁱ	5.359 (8)	5.390(1)	5.392 (2)
(Body diagonal of Sig cu	ıbe)		
Si2· · ·Si2 ^m	5.331 (5)	5.381 (1)	5.392 (1)
(Body diagonal of Si8 cu	ıbe)		
01····02 ⁱⁱ	3.657 (7)	3.575(1)	3.679 (2)
(Across face of Si8 cube)		
$O2 \cdot \cdot \cdot O1^{iv}$	3.735 (7)	3.883(1)	3.754 (2)
(Across face of Sig cube)	• •	.,
Si1···Si2	3.086 (2)	3.109(1)	3.113(1)
(Si ₈ cube edge)			• •
Si2···Si2 ⁱ	3.077 (2)	3.108(1)	3.113(1)
(Si ₈ cube edge)		(-)	- (-)

Symmetry codes: (i) x - y, x, -z; (ii) y, -x + y, -z; (iii) -x, -y, -z; (iv) y - x, -x, z.

The structure was refined by full-matrix least-squares techniques. Anisotropic displacement parameters were refined for all atoms.

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick. 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1991).

This project is financially supported by the Swedish Natural Science Research Council and by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: AB1255). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bürgi, H.-B., Törnroos, K. W., Calzaferri, G. & Bürgy, H. (1993). Inorg. Chem. 32, 4914-4919.
- Calzaferri, G., Imhof, R. & Törnroos, K. W. (1994). J. Chem. Soc. Dalton Trans. pp. 3123-3128.
- Day, V. W., Klemperer, W. G., Mainz, V. V. & Millar, D. M. (1985). J. Am. Chem. Soc. 107, 8262-8264.

Auf der Heyde, T. P. E., Bürgi, H.-B., Bürgy, H. & Törnroos, K. W. (1991). Chimia, 45, 38-40.

- Sanderson, R. T. (1971). Chemical Bonds and Bond Energies, pp. 13–25. New York: Academic Press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Törnroos, K. W., Bürgi, H.-B., Calzaferri, G. & Bürgy, H. (1995). Acta Cryst. B51, 155–161.
- Törnroos, K. W., Schwarzenbach, D., Larsen, F. K. & Delley, B. (1995). Acta Cryst. B51. In preparation.

Acta Cryst. (1995). C51, 1735-1737

Li_{1.14}Nb_{0.93}Sc_{0.67}Cr_{0.40}(PO₄)₃

SYLVIE RIVIER, JACQUES ANGENAULT AND JEAN-CLAUDE COUTURIER

Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université Pierre et Marie Curie, 4 Place Jussieu, Paris CEDEX 05, France

FRANCIS ROBERT

Laboratoire de Chimie des Métaux de Transition, CNRS-URA 419, Université Pierre et Marie Curie, 4 Place Jussieu, Paris CEDEX 05, France

MICHEL QUARTON

Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université Pierre et Marie Curie, 4 Place Jussieu, Paris CEDEX 05, France

Abstract

Lithium niobium scandium-chromium tris(monophosphate) presents a large domain of homogeneity by cationic substitution: $Nb^{V} = Sc^{III}(Cr^{III}) + 2Li^{I}$. Basic structural units comprise two MO_6 octahedra linked by three PO₄ tetrahedra, as in the Nasicon-type structure, with partial ordering of the *M* atoms (M = Nb, Sc, Cr). Li⁺ cations partially occupy interstices of two kinds, connected by channels along the *c* axis with small windows which limit the ionic mobility.

Comment

Compounds forming Nasicon (the acronym for Na superionic conductor) or related structures constitute a very large class of solid-state compounds because Zr in Na $Zr_2(PO_4)_3$ can be substituted by many cations.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved In the course of studies concerning Nasicon-type Li ionic conductors, three extremes of cationic conductivity values at 573 K were found for $\text{Li}_{1+x}\text{Ti}_{2-x}\text{In}_x(\text{PO}_4)_3$, correlated with the existence of three distinct phases: phase I for $0 \le x \le 0.4$ (space group $R\overline{3}c$), phase II for 0.4 < x < 1.1 (*Pbca*) and phase III for $1.1 \le x \le 2$ (*P*2₁/*n*) (Hamdoune, Tran Qui & Schouler, 1986). Phases I and II are found in $\text{Li}_{1-x}\text{Ti}_{2-x}^{IV}\text{Ti}_{x}^{II}(\text{PO}_4)_3$ for $0 \le x \le 0.5$ and 0.5 < x < 1.2, respectively (Wang, Greenblatt, Wang & Hwu, 1993). The covalency of Ti^{IV} —O bonds weakens Li—O interactions and so favours ionic conductivity.

In order to increase covalency of the structural skeleton $[M_2(PO_4)_3]$, we have introduced a cation in a pentavalent oxidation state: $\text{Li}_{2(x+y)-1}\text{Nb}_{2-x-y}^{\text{V}}\text{Sc}_x^{\text{III}}\text{Cr}_y^{\text{III}}$ -(PO₄)₃ presents a large domain of homogeneity for x + y > 0.5. We describe the crystal structure of this phase for x = 0.674 and y = 0.394.

The $[M_2(PO_4)_3]$ framework consists of irregular MO_6 octahedra and PO_4 tetrahedra (Table 2). Like the Nasicon structure (Hagman & Kierkegaard, 1968), the basic unit includes two MO_6 octahedra linked by three PO_4 tetrahedra (Fig. 1). These units are distorted and they reveal partial cationic ordering: Nb and Cr atoms located in $M(1)O_6$ octahedra, Nb and Sc atoms in $M(2)O_6$ octahedra. The M—O distances in the $M(1)O_6$ octahedra are significantly shorter than the M—O distances in the $M(2)O_6$ octahedra are significantly shorter than the M—O distances in the $M(2)O_6$ octahedra in accord with the values of the ionic radii: $r_{Nb^{5+}} = 0.64$, $r_{Cr^{3+}} = 0.615$ and $r_{Sc^{3+}} = 0.745$ Å (Shannon, 1976). Two parallel units $[M(1)M(2)P_3O_{18}]$ share two corner O atoms, thus constituting double units $[M(1)_2M(2)_2P_6O_{34}]$ (Fig. 1).

Fig. 1. Perspective view of the title compound. Small circles are Li atoms.